3.134 \(\int \frac{1}{(a+a \sec (c+d x))^2 \sqrt{e \tan (c+d x)}} \, dx\)

Optimal. Leaf size=365 \[ -\frac{10 \sqrt{\sin (2 c+2 d x)} \sec (c+d x) \text{EllipticF}\left (c+d x-\frac{\pi }{4},2\right )}{21 a^2 d \sqrt{e \tan (c+d x)}}-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d \sqrt{e}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} a^2 d \sqrt{e}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{\log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}+\frac{\log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}} \]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]]/(Sqrt[2]*a^2*d*Sqrt[e])) + ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan
[c + d*x]])/Sqrt[e]]/(Sqrt[2]*a^2*d*Sqrt[e]) - Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*Tan[c + d*x
]]]/(2*Sqrt[2]*a^2*d*Sqrt[e]) + Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]]/(2*Sqrt[2]*
a^2*d*Sqrt[e]) - (4*e^3)/(7*a^2*d*(e*Tan[c + d*x])^(7/2)) + (4*e^3*Sec[c + d*x])/(7*a^2*d*(e*Tan[c + d*x])^(7/
2)) + (2*e)/(3*a^2*d*(e*Tan[c + d*x])^(3/2)) - (20*e*Sec[c + d*x])/(21*a^2*d*(e*Tan[c + d*x])^(3/2)) - (10*Ell
ipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(21*a^2*d*Sqrt[e*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.530867, antiderivative size = 365, normalized size of antiderivative = 1., number of steps used = 23, number of rules used = 17, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.68, Rules used = {3888, 3886, 3474, 3476, 329, 211, 1165, 628, 1162, 617, 204, 2609, 2614, 2573, 2641, 2607, 32} \[ -\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d \sqrt{e}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} a^2 d \sqrt{e}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{\log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}+\frac{\log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}-\frac{10 \sqrt{\sin (2 c+2 d x)} \sec (c+d x) F\left (\left .c+d x-\frac{\pi }{4}\right |2\right )}{21 a^2 d \sqrt{e \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]]),x]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]]/(Sqrt[2]*a^2*d*Sqrt[e])) + ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan
[c + d*x]])/Sqrt[e]]/(Sqrt[2]*a^2*d*Sqrt[e]) - Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*Tan[c + d*x
]]]/(2*Sqrt[2]*a^2*d*Sqrt[e]) + Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]]/(2*Sqrt[2]*
a^2*d*Sqrt[e]) - (4*e^3)/(7*a^2*d*(e*Tan[c + d*x])^(7/2)) + (4*e^3*Sec[c + d*x])/(7*a^2*d*(e*Tan[c + d*x])^(7/
2)) + (2*e)/(3*a^2*d*(e*Tan[c + d*x])^(3/2)) - (20*e*Sec[c + d*x])/(21*a^2*d*(e*Tan[c + d*x])^(3/2)) - (10*Ell
ipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(21*a^2*d*Sqrt[e*Tan[c + d*x]])

Rule 3888

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rule 3886

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]

Rule 3474

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 2609

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1))/(b*f*(n + 1)), x] - Dist[(m + n + 1)/(b^2*(n + 1)), Int[(a*Sec[e + f*x])^m*(
b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && IntegersQ[2*m, 2*n]

Rule 2614

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2573

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sec (c+d x))^2 \sqrt{e \tan (c+d x)}} \, dx &=\frac{e^4 \int \frac{(-a+a \sec (c+d x))^2}{(e \tan (c+d x))^{9/2}} \, dx}{a^4}\\ &=\frac{e^4 \int \left (\frac{a^2}{(e \tan (c+d x))^{9/2}}-\frac{2 a^2 \sec (c+d x)}{(e \tan (c+d x))^{9/2}}+\frac{a^2 \sec ^2(c+d x)}{(e \tan (c+d x))^{9/2}}\right ) \, dx}{a^4}\\ &=\frac{e^4 \int \frac{1}{(e \tan (c+d x))^{9/2}} \, dx}{a^2}+\frac{e^4 \int \frac{\sec ^2(c+d x)}{(e \tan (c+d x))^{9/2}} \, dx}{a^2}-\frac{\left (2 e^4\right ) \int \frac{\sec (c+d x)}{(e \tan (c+d x))^{9/2}} \, dx}{a^2}\\ &=-\frac{2 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}-\frac{e^2 \int \frac{1}{(e \tan (c+d x))^{5/2}} \, dx}{a^2}+\frac{\left (10 e^2\right ) \int \frac{\sec (c+d x)}{(e \tan (c+d x))^{5/2}} \, dx}{7 a^2}+\frac{e^4 \operatorname{Subst}\left (\int \frac{1}{(e x)^{9/2}} \, dx,x,\tan (c+d x)\right )}{a^2 d}\\ &=-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}-\frac{10 \int \frac{\sec (c+d x)}{\sqrt{e \tan (c+d x)}} \, dx}{21 a^2}+\frac{\int \frac{1}{\sqrt{e \tan (c+d x)}} \, dx}{a^2}\\ &=-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}+\frac{e \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (e^2+x^2\right )} \, dx,x,e \tan (c+d x)\right )}{a^2 d}-\frac{\left (10 \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{\sin (c+d x)}} \, dx}{21 a^2 \sqrt{\cos (c+d x)} \sqrt{e \tan (c+d x)}}\\ &=-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}+\frac{(2 e) \operatorname{Subst}\left (\int \frac{1}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}-\frac{\left (10 \sec (c+d x) \sqrt{\sin (2 c+2 d x)}\right ) \int \frac{1}{\sqrt{\sin (2 c+2 d x)}} \, dx}{21 a^2 \sqrt{e \tan (c+d x)}}\\ &=-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}-\frac{10 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{21 a^2 d \sqrt{e \tan (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{e-x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}+\frac{\operatorname{Subst}\left (\int \frac{e+x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}\\ &=-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}-\frac{10 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{21 a^2 d \sqrt{e \tan (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{e-\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 a^2 d}+\frac{\operatorname{Subst}\left (\int \frac{1}{e+\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 a^2 d}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}+2 x}{-e-\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}-2 x}{-e+\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}\\ &=-\frac{\log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}+\frac{\log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}-\frac{10 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{21 a^2 d \sqrt{e \tan (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d \sqrt{e}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d \sqrt{e}}\\ &=-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d \sqrt{e}}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d \sqrt{e}}-\frac{\log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}+\frac{\log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d \sqrt{e}}-\frac{4 e^3}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{4 e^3 \sec (c+d x)}{7 a^2 d (e \tan (c+d x))^{7/2}}+\frac{2 e}{3 a^2 d (e \tan (c+d x))^{3/2}}-\frac{20 e \sec (c+d x)}{21 a^2 d (e \tan (c+d x))^{3/2}}-\frac{10 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{21 a^2 d \sqrt{e \tan (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 8.78683, size = 1281, normalized size = 3.51 \[ \frac{80 \sqrt [4]{-1} \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt [4]{-1} \sqrt{\tan (c+d x)}\right ),-1\right ) \sqrt{\tan (c+d x)} \sec ^5(c+d x)}{21 d (\sec (c+d x) a+a)^2 \sqrt{e \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )^{3/2}}+\frac{\cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (-\frac{2 \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right )}{7 d}+\frac{64 \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right )}{21 d}+\frac{4 (-20 \cos (c)+21 \cos (2 c)+21) \cos (d x) \sec (2 c)}{21 d}-\frac{4 \sec (2 c) (21 \sin (2 c)-20 \sin (c)) \sin (d x)}{21 d}-\frac{104}{21 d}\right ) \tan (c+d x) \sec ^2(c+d x)}{(\sec (c+d x) a+a)^2 \sqrt{e \tan (c+d x)}}+\frac{40 e^{-i (c+d x)} \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (1+e^{2 i (c+d x)}\right ) \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \sec (2 c) \sqrt{\tan (c+d x)} \sec ^2(c+d x)}{21 d (\sec (c+d x) a+a)^2 \sqrt{e \tan (c+d x)}}+\frac{e^{-2 i c} \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (e^{4 i c} \sqrt{-1+e^{4 i (c+d x)}} \tan ^{-1}\left (\sqrt{-1+e^{4 i (c+d x)}}\right )+2 \sqrt{-1+e^{2 i (c+d x)}} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )\right ) \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \sec (2 c) \sqrt{\tan (c+d x)} \sec ^2(c+d x)}{d \left (-1+e^{2 i (c+d x)}\right ) (\sec (c+d x) a+a)^2 \sqrt{e \tan (c+d x)}}+\frac{e^{-2 i c} \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (\sqrt{-1+e^{4 i (c+d x)}} \tan ^{-1}\left (\sqrt{-1+e^{4 i (c+d x)}}\right )+2 e^{4 i c} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )\right ) \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \sec (2 c) \sqrt{\tan (c+d x)} \sec ^2(c+d x)}{d \left (-1+e^{2 i (c+d x)}\right ) (\sec (c+d x) a+a)^2 \sqrt{e \tan (c+d x)}}-\frac{2 e^{-i (2 c+d x)} \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (3 \left (-1+e^{4 i (c+d x)}\right )+e^{4 i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt{1-e^{4 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},e^{4 i (c+d x)}\right )\right ) \sec (2 c) \sqrt{\tan (c+d x)} \sec ^2(c+d x)}{3 d \left (-1+e^{2 i (c+d x)}\right ) (\sec (c+d x) a+a)^2 \sqrt{e \tan (c+d x)}}+\frac{2 e^{-i d x} \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (e^{2 i (c+2 d x)} \left (-1+e^{2 i c}\right ) \sqrt{1-e^{4 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},e^{4 i (c+d x)}\right )-3 e^{4 i (c+d x)}+3\right ) \sec (2 c) \sqrt{\tan (c+d x)} \sec ^2(c+d x)}{3 d \left (-1+e^{2 i (c+d x)}\right ) (\sec (c+d x) a+a)^2 \sqrt{e \tan (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]]),x]

[Out]

(40*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*Cos[c/2 + (d*x
)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[Tan[c + d*x]])/(21*d*E^(I*(c + d*x))*(a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c +
 d*x]]) + (Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(E^((4*I)*c)*Sqrt[-1 + E^((4*I)*(
c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x))]] + 2*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*
x))]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c
+ d*x]^2*Sqrt[Tan[c + d*x]])/(d*E^((2*I)*c)*(-1 + E^((2*I)*(c + d*x)))*(a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d
*x]]) + (Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(Sqrt[-1 + E^((4*I)*(c + d*x))]*Arc
Tan[Sqrt[-1 + E^((4*I)*(c + d*x))]] + 2*E^((4*I)*c)*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x)
)]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c +
d*x]^2*Sqrt[Tan[c + d*x]])/(d*E^((2*I)*c)*(-1 + E^((2*I)*(c + d*x)))*(a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x
]]) - (2*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*Cos[c/2 + (d*x)/2]^4*(3*(-1 + E^((4
*I)*(c + d*x))) + E^((4*I)*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2,
3/4, 7/4, E^((4*I)*(c + d*x))])*Sec[2*c]*Sec[c + d*x]^2*Sqrt[Tan[c + d*x]])/(3*d*E^(I*(2*c + d*x))*(-1 + E^((2
*I)*(c + d*x)))*(a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]]) + (2*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 +
E^((2*I)*(c + d*x)))]*Cos[c/2 + (d*x)/2]^4*(3 - 3*E^((4*I)*(c + d*x)) + E^((2*I)*(c + 2*d*x))*(-1 + E^((2*I)*c
))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^((4*I)*(c + d*x))])*Sec[2*c]*Sec[c + d*x]^
2*Sqrt[Tan[c + d*x]])/(3*d*E^(I*d*x)*(-1 + E^((2*I)*(c + d*x)))*(a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]]) +
 (Cos[c/2 + (d*x)/2]^4*Sec[c + d*x]^2*(-104/(21*d) + (4*(21 - 20*Cos[c] + 21*Cos[2*c])*Cos[d*x]*Sec[2*c])/(21*
d) + (64*Sec[c/2 + (d*x)/2]^2)/(21*d) - (2*Sec[c/2 + (d*x)/2]^4)/(7*d) - (4*Sec[2*c]*(-20*Sin[c] + 21*Sin[2*c]
)*Sin[d*x])/(21*d))*Tan[c + d*x])/((a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]]) + (80*(-1)^(1/4)*Cos[c/2 + (d*
x)/2]^4*EllipticF[I*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]], -1]*Sec[c + d*x]^5*Sqrt[Tan[c + d*x]])/(21*d*(a +
a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]]*(1 + Tan[c + d*x]^2)^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.294, size = 1896, normalized size = 5.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(1/2),x)

[Out]

-1/42/a^2/d*2^(1/2)*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))^3*(-21*I*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c)
)^(1/2),1/2+1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2
)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)+21*I*sin(d*x+c)*cos(d*x+c)^2*((1-cos(d*x+c)+sin(d*x+
c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*Ellipti
cPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))+21*sin(d*x+c)*EllipticPi(((1-cos(d*x+c
)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(
d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2+21*sin(d*x+c)*EllipticPi((
(1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos
(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2-62*sin(d*x+c)*
EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+co
s(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2-21*I*sin(d*x+
c)*cos(d*x+c)^2*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-
1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))
+42*I*cos(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c
))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2
)*sin(d*x+c)+42*sin(d*x+c)*cos(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c
))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),
1/2-1/2*I,1/2*2^(1/2))+42*sin(d*x+c)*cos(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))
/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+
c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-124*sin(d*x+c)*cos(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+
sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((1-cos(d*x+c)+sin(d*x+c)
)/sin(d*x+c))^(1/2),1/2*2^(1/2))+21*I*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1
/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x
+c)+sin(d*x+c))/sin(d*x+c))^(1/2)-42*I*cos(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+
1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*
x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)+21*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)
+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+
c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))+21*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+
sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c
))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-62*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+s
in(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((1-cos(d*x+c)+sin(d*x+c))
/sin(d*x+c))^(1/2),1/2*2^(1/2))+26*cos(d*x+c)^3*2^(1/2)-6*cos(d*x+c)^2*2^(1/2)-20*cos(d*x+c)*2^(1/2))/sin(d*x+
c)^7/cos(d*x+c)/(e*sin(d*x+c)/cos(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{e \tan \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*sqrt(e*tan(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{1}{\sqrt{e \tan{\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )} + 2 \sqrt{e \tan{\left (c + d x \right )}} \sec{\left (c + d x \right )} + \sqrt{e \tan{\left (c + d x \right )}}}\, dx}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))**2/(e*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*tan(c + d*x))*sec(c + d*x)**2 + 2*sqrt(e*tan(c + d*x))*sec(c + d*x) + sqrt(e*tan(c + d*x)))
, x)/a**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{e \tan \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*sqrt(e*tan(d*x + c))), x)